* This is a comparison of how well the logit does relative to the probit when the data is generated from the assumptions underlying the probit.

* First let's generate data that is consistent with the probit assumptions

clear

set seed 101

set obs 1000

* x is the explanatory variable

gen x = rnormal()*(1/2)^(1/2)

* u is the error

gen u = rnormal()*(1/2)^(1/2)

* y is the unobservable structural y

gen y = x + u

* In order to do a probit correctly the underlying distribution has to be standard normal (which is not a restriction so long as you remember when generating values.)

* This is why rnormal*(1/2)^(1/2) -> var(y)=var(x+u)=(1/2)*1+(1/2)*1=1

sum y

* Pretty close to 1 in the sample

* y_prob is the probability of observing a 1 given

gen y_prob = normal(y)

* y is the actual binary draws

gen y_observed = rbinomial(1,y_prob)

* now let's try estimating probit first

probit y_observed x

* Save the estimated coefficient to a local macro

local coef_probit = _b[x]

* let's predict the probabilities

predict y_probit

label var y_probit "Probit fitted values"

* Now let's estimate the logit

logit y_observed x

* Save the logit to a local macro

local coef_logit = _b[x]

* predict the probabilities from the logit

predict y_logit

label var y_logit "Logit fitted values"

* We can see that both the probit and the logit are almost identical

two (line y_logit x, sort) (line y_probit x, sort)

di "It is a somewhat well known property that probits and logits are in practice almost linearly equivalent."

di "The ratio of probit to logit is: `=`coef_probit'/`coef_logit''"

reg y_probit y_logit

* Check out that R-squared!

* So what does all of this practically mean?

* Feel free to switch between probit and logit whenever you want. The choice should not generally significantly affect your estimates.

* Note: for mathematical reasons sometimes it is easier using one over the other.

* Finally, if you want to recover the original coefficient on x the best thing to do is to take the average partial effect (APE)

probit y_observed x

di (1/2)^(1/2)

test x==.70710678

* The probit results get fairly close but we reject the null

## No comments :

## Post a Comment